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Most textbooks define weight as the force of gravity which the nearest astronomical body
exerts on an object. This has several problems, most of which are associated with the fact that
this definition involves an abstract action at a distance, a concept quite difficult for introductory
students to grasp. For example, what does one call the “corrected weight” after accounting for
the centrifugal force due to Earth’s rotation or for the Sun’s gravitational attraction? How about
the “apparent weight” of an individual aboard an orbiting space shuttle or an accelerating
elevator? In light of such issues, an alternative, operational definition of weight as the reading on
a spring scale (or equivalently, on a gravimeter) has grown in popularity. In this note, I
summarize how this concept would be used in the typical classical mechanics sequence of a
physics course.

The root idea appears in the free-fall section of the 1D kinematics chapter and the projectile
motion discussion in 2D kinematics. We consider an object which meets the following
conditions:

• it is falling freely under the influence of gravity alone—that is, it has no internal propulsion
system, air resistance is negligible, it is not being restrained by contact with anything (surfaces,
springs, strings, etc.), and no electromagnetic forces are acting upon it;

• it is in the vicinity of Earth’s surface (to be specific, say within 10 km);
• it is observed by an individual at rest on Earth (i.e., in Earth’s frame of reference).

We call this “surface freefall motion in Earth’s frame” or more simply “projectile motion” for
brevity. Experiments are now either actually performed or cited to show that the acceleration
under these conditions is approximately constant in magnitude and direction, which we write as

a proj = 9 8.  m / s  downward2 . (1)

All the usual kinematics problems can now be worked.
Next forces are introduced, defined operationally as pushes or pulls on an object. Given that

forces are always local, there is little merit in distinguishing contact and field forces. Newton’s
first law is a statement about the existence of inertial reference frames. Inertial mass minertial is
introduced as a measure of the inertia of an object, that is, its resistance to accelerations via
Newton’s second law. A catalog of forces follows, beginning with the normal force. Newton’s
third law is then introduced and weight is defined as the third-law counterpart to a vertically
supporting normal force, i.e., what a bathroom scale would read if the object were placed on it in
the local freefall orientation with no other forces acting on it. It is worth emphasizing that the
constancy of aproj in the afore-mentioned experiments implies weight is independent of velocity,
i.e., in order to place a moving object on a scale, one is permitted to first stop the object. The
physical origin of this weight force is explained to be due to an interaction between an intrinsic
property of the object called its gravitational mass mgrav and a local quantity called the
gravitational field g. The value of this field at a point in space has units of N/kg and depends on
two things: the location of that point relative to all other gravitational masses of significance and
the choice of the reference frame in which this field is measured. The first effect can be
quantified using the universal law of gravitation, which can be introduced at this juncture.
Neglecting all large bodies other than the Earth, we obtain



g r( ) ˆr
GM

r
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The important issue concerning the second effect is whether the reference frame is inertial, as
was implicitly assumed in writing Eq. (2). If it is not, we subscript g with the name of the frame,
whose acceleration must be known. The following four examples can be analyzed.

First, let’s idealize and suppose the Earth to be perfectly spherical, of uniform density,
nonrotating, and lacking an atmosphere, with no other astronomical bodies in the vicinity. Now
consider an object near its surface and suppose we wish to measure its weight in Earth’s frame of
reference which is inertial under these idealized conditions. To do so, we simply drop the object
so that it falls freely and apply Newton’s second law,

F a g a= ⇒ =m m R minertial grav E inertial proj( ) . (3)

Substituting Eqs. (1) and (2), together with the known values for the mass and radius of Earth
and for the universal gravitational constant, we find two remarkable facts,

a gproj ER= ( )  and m m mgrav inertial= ≡ . (4)

The first result accounts for our experimentally determined value of the acceleration of a
projectile. Note the unit consistency, m / s N / kg2 = . In imperial units,
1 1 lb 4.448 N = 2.2  kg 9.8 m / s2≡ ×− , from which one deduces the familiar fact that
2.2 kilograms weigh one pound at Earth’s surface. The second result is called the principle of
equivalence—historically minded lecturers might enjoy a brief detour into general relativity to
discuss the significance of this “coincidence.”

As a second example, consider a small satellite (such as the space shuttle) orbiting around
our idealized Earth from the point of view of two different observers. First, suppose an astronaut
aboard the shuttle, which is a noninertial frame of reference, observes an apple floating
motionlessly with respect to it. The apple is weightless because if the astronaut placed it on a
scale the reading would remain zero, i.e.,

g rshuttle orbit( ) = 0 . (5)

In contrast, consider a second observer standing on a tall tower with its base attached to the Earth
and its platform at the instantaneous location of the shuttle. He snatches the apple as it passes by
and places it on his own scale, thereby deducing that
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The tower observer points out that this nonzero gravitational field is equal to the centripetal
acceleration of the orbiting apple; the astronaut, equally correctly, notes that weightlessness is
consistent with the fact that the apple remains at rest in his frame of reference. The
transformation equation for the gravitational field is

g g anoninertial inertial frame= − (7)

where aframe is the acceleration of the noninertial frame as measured by an inertial observer. This



is simply the derivative of the Galilean transformation law for relative velocities. Weight is thus
frame-dependent and one must deduce the reference frame from the context if it is not explicitly
stated.

As an everyday example of the consequences of Eq. (7), consider next a woman of mass m
standing on the floor of an elevator accelerating downward with magnitude a. In earth’s frame,
her weight is mg RE( ), while in her own frame it is m g R aE[ ( ) ]− . She weighs less and can
directly feel this as a more jaunty spring in her stride if she walks around. This result can also be
calculated as the magnitude of the normal force with which the elevator floor pushes upward on
her. The limiting case is if the elevator cable breaks so that it falls freely with a a g Rproj E= = ( ) .
In that case the woman is weightless: she can freely float around inside along with any other
contents of the elevator.

Finally we consider the effects of the real Earth. The rotation results in centrifugal and
Coriolis forces. The former results in a deviation away from the purely radial direction and into
the polar direction of a plumb bob at acute angles of latitude. The latter is responsible, for
example, for the circulation of hurricanes. The sun and moon have ratios of mass to distance
squared which are large enough to have measurable gravitational effects on earth, as evidenced
by the tides for instance. Modern gravimeters are sensitive enough to detect the asphericity and
inhomogeneity of the earth. There is a small equatorial bulge, the effect of which can easily be
estimated using Eq. (2). Nonuniformities in density may indicate the presence of heavy mineral
deposits or light oil cavities, and hence their detection is a valuable prospecting tool. All of the
preceding effects are included in a spring scale measurement; hence Eq. (4) remains valid. Lastly
we can account for air resistance by measuring the acceleration of a projectile only at instants in
its trajectory when its speed and hence the drag is low. Best of all is to extrapolate the motion of
an object dropped from rest back to t = 0.


